Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(22): 4950-4959.e4, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37918397

RESUMO

Early visual areas are retinotopically organized in human and non-human primates. Population receptive field (pRF) size increases with eccentricity and from lower- to higher-level visual areas. Furthermore, the cortical magnification factor (CMF), a measure of how much cortical space is devoted to each degree of visual angle, is typically larger for foveal as opposed to peripheral regions of the visual field. Whether this fine-scale organization within and across visual areas depends on early visual experience has yet been unknown. Here, we employed 7T functional magnetic resonance imaging pRF mapping to assess the retinotopic organization of early visual regions (i.e., V1, V2, and V3) in eight sight recovery individuals with a history of congenital blindness until a maximum of 4 years of age. Compared with sighted controls, foveal pRF sizes in these individuals were larger, and pRF sizes did not show the typical increase with eccentricity and down the visual cortical processing stream (V1-V2-V3). Cortical magnification was overall diminished and decreased less from foveal to parafoveal visual field locations. Furthermore, cortical magnification correlated with visual acuity in sight recovery individuals. The results of this study suggest that early visual experience is essential for refining a presumably innate prototypical retinotopic organization in humans within and across visual areas, which seems to be crucial for acquiring full visual capabilities.


Assuntos
Mapeamento Encefálico , Córtex Visual , Animais , Humanos , Mapeamento Encefálico/métodos , Campos Visuais , Percepção Visual , Visão Ocular , Imageamento por Ressonância Magnética/métodos , Vias Visuais
2.
Cereb Cortex ; 31(1): 603-619, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32968767

RESUMO

Human visual cortex contains many retinotopic and category-specific regions. These brain regions have been the focus of a large body of functional magnetic resonance imaging research, significantly expanding our understanding of visual processing. As studying these regions requires accurate localization of their cortical location, researchers perform functional localizer scans to identify these regions in each individual. However, it is not always possible to conduct these localizer scans. Here, we developed and validated a functional region of interest (ROI) atlas of early visual and category-selective regions in human ventral and lateral occipito-temporal cortex. Results show that for the majority of functionally defined ROIs, cortex-based alignment results in lower between-subject variability compared to nonlinear volumetric alignment. Furthermore, we demonstrate that 1) the atlas accurately predicts the location of an independent dataset of ventral temporal cortex ROIs and other atlases of place selectivity, motion selectivity, and retinotopy. Next, 2) we show that the majority of voxel within our atlas is responding mostly to the labeled category in a left-out subject cross-validation, demonstrating the utility of this atlas. The functional atlas is publicly available (download.brainvoyager.com/data/visfAtlas.zip) and can help identify the location of these regions in healthy subjects as well as populations (e.g., blind people, infants) in which functional localizers cannot be run.


Assuntos
Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Lobo Occipital/fisiologia , Percepção Visual/fisiologia
3.
Hum Brain Mapp ; 40(14): 4026-4037, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31179609

RESUMO

Head motion is a common problem in clinical as well as empirical (functional) magnetic resonance imaging applications, as it can lead to severe artefacts that reduce image quality. The scanned individuals themselves, however, are often not aware of their head motion. The current study explored whether providing subjects with this information using tactile feedback would reduce their head motion and consequently improve image quality. In a single session that included six runs, 24 participants performed three different cognitive tasks: (a) passive viewing, (b) mental imagery, and (c) speeded responses. These tasks occurred in two different conditions: (a) with a strip of medical tape applied from one side of the magnetic resonance head coil, via the participant's forehead, to the other side, and (b) without the medical tape being applied. Results revealed that application of medical tape to the forehead of subjects to provide tactile feedback significantly reduced both translational as well as rotational head motion. While this effect did not differ between the three cognitive tasks, there was a negative quadratic relationship between head motion with and without feedback. That is, the more head motion a subject produced without feedback, the stronger the motion reduction given the feedback. In conclusion, the here tested method provides a simple and cost-efficient way to reduce subjects' head motion, and might be especially beneficial when extensive head motion is expected a priori.


Assuntos
Artefatos , Retroalimentação Sensorial , Movimentos da Cabeça , Imageamento por Ressonância Magnética/métodos , Adolescente , Feminino , Humanos , Masculino , Movimento (Física) , Tato , Adulto Jovem
4.
Brain Struct Funct ; 224(3): 1167-1183, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30637491

RESUMO

Visual mental imagery is the quasi-perceptual experience of "seeing in the mind's eye". While a tight correspondence between imagery and perception in terms of subjective experience is well established, their correspondence in terms of neural representations remains insufficiently understood. In the present study, we exploit the high spatial resolution of functional magnetic resonance imaging (fMRI) at 7T, the retinotopic organization of early visual cortex, and machine-learning techniques to investigate whether visual imagery of letter shapes preserves the topographic organization of perceived shapes. Sub-millimeter resolution fMRI images were obtained from early visual cortex in six subjects performing visual imagery of four different letter shapes. Predictions of imagery voxel activation patterns based on a population receptive field-encoding model and physical letter stimuli provided first evidence in favor of detailed topographic organization. Subsequent visual field reconstructions of imagery data based on the inversion of the encoding model further showed that visual imagery preserves the geometric profile of letter shapes. These results open new avenues for decoding, as we show that a denoising autoencoder can be used to pretrain a classifier purely based on perceptual data before fine-tuning it on imagery data. Finally, we show that the autoencoder can project imagery-related voxel activations onto their perceptual counterpart allowing for visually recognizable reconstructions even at the single-trial level. The latter may eventually be utilized for the development of content-based BCI letter-speller systems.


Assuntos
Mapeamento Encefálico , Imaginação/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Vocabulário , Estimulação Acústica , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Inquéritos e Questionários , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...